Enhancement of TRAIL-induced apoptosis by 5-fluorouracil requires activating Bax and p53 pathways in TRAIL-resistant lung cancers
نویسندگان
چکیده
Lung cancer, especially lung adenocarcinoma, is one of the main causes of death worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a primary anticancer agent and a member of the tumor necrosis factor family that selectively induces apoptosis in various tumor cells, but not in normal cells. Combination chemotherapy can be used for treating specific cancer types even at progressive stages. In the present study, we observed that 5-fluorouracil, which exerts anticancer effects by inhibiting tumor cell proliferation, enhanced TRAIL-induced apoptosis of TRAIL-resistant human adenocarcinoma A549 cells. Interestingly, 5-fluorouracil treatment markedly increased Bax and p53 levels and 5-fluorouracil and TRAIL cotreatment increased Ac-cas3 and Ac-cas8 levels compared with those in control cells. Taken together, the present study demonstrated that 5-fluorouracil enhances TRAIL-induced apoptosis in TRAIL-resistant lung adenocarcinoma cells by activating Bax and p53, and also suggest that TRAIL and 5-fluorouracil cotreatment can be used as an adequate therapeutic strategy for TRAIL-resistant human cancers.
منابع مشابه
Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L).
The cornerstone of the systemic treatment of advanced colorectal cancer is 5-fluorouracil.However, 5-fluorouracil-induced apoptosis is dependent on p53, a tumor suppressor gene that is lost or inactivated in at least 85% of human colorectal cancers. Here we show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L triggers caspase-8-mediated truncation of BID, mitochondria...
متن کاملSensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II.
Tumor-cell death can be triggered by engagement of specific death receptors with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL). Apo2L/TRAIL-induced apoptosis involves caspase-8-mediated cleavage of BID. The active truncated form of BID (tBID) triggers the mitochondrial activation of caspase-9 by inducing the activation of BAK or BAX. Although a broad spectrum...
متن کاملSynergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells
Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...
متن کاملApigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner
Apigenin (APG) is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. APG treatment results in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between APG and TRAIL in non-small cell lung cancer (NSCLC) cells. We observed a synergistic effect between A...
متن کاملInorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in prostate cancer cells through DR4 and DR5 death receptors, but not in normal prostate cells, which do not express these receptors. Therefore, TRAIL has excellent potential to be a selective prostate cancer therapeutic agent with minimal toxic side effects. However, prostate cancer cells, as man...
متن کامل